Smart Computational Imaging (SCI) Lab
智能计算成像实验室

天气信息
文章分类

文章分类

副标题

会员登录
登录
研究亮点

Thesynergy of traditional techniques and deep learning enables single‐framehighprecision fringe pattern analysisA new publication from Opto Electronic Advances, 10.29026/oea.2024.230034 discusses h...

Recently, deep learning has yielded transformative success across optics and photonics, especially in optical metrology. Deep neural networks (DNNs) with a fully convolutional architecture (e.g., U-Ne

Recently, deep learning has yielded transformative success across optics and photonics, especially in optical metrology. Deep neural networks (DNNs) with a fully convolutional architecture (e.g., U-Ne

La métrologie optique, en tant que technique de métrologie à usage général utilisant la lumière comme support d'informations pour des mesures sans contact et non destructives, est fondamentale pour le

Optical metrology, as a general-purpose metrology technique that uses light as information carriers for non-contact and non-destructive measurement, is fundamental to manufacturing, basic research,...

南京理工大学陈钱、左超教授课题组提出了一种结合传统技术与深度学习的单帧高精度条纹图案分析方法。通过将传统单帧条纹分析方法嵌入到深度学习的网络结构和损失函数中,利用可学习的自适应频域滤波直接从单幅条纹图像中恢复出可靠的相位初值,进而引导神经网络实现高精度、高计算效率的相位测量。这项研究表明,基于物理模型的传统技术和数据驱动的深度学习方法协同作用有望为实现快速、高精度的单帧三维成像开辟新途径。

A new publication from Opto-Electronic Advances, 10.29026/oea.2024.230034 discusseshow the synergy of traditional techniques and deep learning enablessingle-frame high-precision fringe pattern anal...

The synergy of traditional techniques and deep learning enables single-frame high-precision fringe pattern analysisA new publication from Opto-Electronic Advances, 10.29026/oea.2024.230034   discus...

Synergy of traditional techniques and deep learning enables single-frame high-precision fringe pattern analysis Fig. 1. Diagrams of the physics-based traditional method, physics-informed deep

Synergy of traditional techniques and deep learning enables single-frame high-precision fringe pattern analysisFig. 1. Diagrams of the physics-based traditional method, physics-informed deep learni...

Synergy of traditional techniques and deep learning enables single-frame high-precision fringe pattern analysisFig. 1. Diagrams of the physics-based traditional method, physics-informed deep learni...

Recently, the research group led by Prof. Qian Chen and Prof. Chao Zuo at the School of Electronic and Optical Engineering, Nanjing University of Science and Technology (NJUST) has published a rese...

近日,南京理工大学陈钱教授、左超教授团队提出了一种基于对向照明实现高分辨率准各向同性三维衍射层析的研究,首次在单个显微成像系统中同时耦合透射角度扫描和反射波长扫描两种照明模式,以扩大光谱支持率,解决由于投影角度有限而导致的缺失锥问题。与仅透射方法相比,该技术使得物函数频谱覆盖支持域突破了单物镜数值孔径的限制,轴向分辨率提升了3倍,最终实现了274 nm的三维准各向同性分辨率。相关研究成果近期作为封

受激辐射超分辨成像技术(stimulated emission depletion microscope-STED)采用一束环形光来通过受激辐射淬灭外围区域的荧光染料,将高斯光束与环形光束重叠得到环形光中心未被淬灭的荧光染料,图像的分辨率与未被淬灭的荧光染料半径有关,半径越小,分辨率越高,所需的淬灭光功率越高,

Recently, the research group of Prof. Qian Chen and Prof. Chao Zuo from the School of Electronic and Optical Engineering, Nanjing University of Science and Technology (NJUST) has published a resear...

Opto-Electronic Science 2023年第4期论文推荐:南理工陈钱、左超教授与西电郜鹏教授合作,将深度学习模型与物理模型进行有机结合,在仅使用传统模型数据集1/10的情况下,有效解决了微离轴数字全息解调过程中的伪影残留问题,并且相位重构精度相比于传统物理方法提高了10倍以上。封面文章 | Li ZS, Sun JS, Fan Y, Jin YB, Shen Q et al....

创新点:团队利用上转换纳米颗粒作为荧光探针,通过研究Tm3+掺杂的β-NaYF4纳米粒子的能量传递过程,构建基态关联的动态交叉驰豫能量传递,借助上转换纳米颗粒的非饱和激发成功预测高打灭效率下的理想激发功率,成功实现了基于高阶非线性共聚焦超分辨下的受激辐射超分辨成像,其分辨率可以达到33nm。关键词:受激辐射超分辨,上转换纳米颗粒,光子雪崩,交叉弛豫能量传递受激辐射超分辨成像技术(stimul...

《激光与光电子学进展》于2023年第8期(4月)推出“三维成像技术及应用”专题,特邀南京理工大学陈钱教授、左超教授团队撰写研究论文“基于VCSEL投影阵列的散斑结构光三维成像技术及其传感器设计”,该论文被选为本期封面文章。论文提出了一种基于垂直腔面发射激光器(VCSEL)投影阵列的散斑结构光三维成像技术及其传感器设计方法,所研制的三维传感器集成了3个小型化散斑投影模组投影一组空间位置不同的散...

Recently, the research group of Profs. Qian Chen and Chao Zuo from the School of Electronic and Optical Engineering, Nanjing University of Science and Technology (NJUST) proposed a novel label-free...

近期,我校电子工程与光电技术学院(以下简称“电光学院”)陈钱教授、左超教授团队在非干涉定量相位成像技术领域取得最新进展,相关研究成果在光学顶尖期刊Photonics Research上发表,论文题目为“Accurate quantitative phase imaging by differential phase contrast with partially coherent illum...

上一页 1 2 3 下一页
SCILab 官方公众号
SCILab 官方B站